3.4.47 \(\int \frac {x^6}{(a+b x^3)^3} \, dx\) [347]

3.4.47.1 Optimal result
3.4.47.2 Mathematica [A] (verified)
3.4.47.3 Rubi [A] (verified)
3.4.47.4 Maple [C] (verified)
3.4.47.5 Fricas [B] (verification not implemented)
3.4.47.6 Sympy [A] (verification not implemented)
3.4.47.7 Maxima [A] (verification not implemented)
3.4.47.8 Giac [A] (verification not implemented)
3.4.47.9 Mupad [B] (verification not implemented)

3.4.47.1 Optimal result

Integrand size = 13, antiderivative size = 153 \[ \int \frac {x^6}{\left (a+b x^3\right )^3} \, dx=-\frac {x^4}{6 b \left (a+b x^3\right )^2}-\frac {2 x}{9 b^2 \left (a+b x^3\right )}-\frac {2 \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{9 \sqrt {3} a^{2/3} b^{7/3}}+\frac {2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{27 a^{2/3} b^{7/3}}-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{27 a^{2/3} b^{7/3}} \]

output
-1/6*x^4/b/(b*x^3+a)^2-2/9*x/b^2/(b*x^3+a)+2/27*ln(a^(1/3)+b^(1/3)*x)/a^(2 
/3)/b^(7/3)-1/27*ln(a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/a^(2/3)/b^(7/3) 
-2/27*arctan(1/3*(a^(1/3)-2*b^(1/3)*x)/a^(1/3)*3^(1/2))/a^(2/3)/b^(7/3)*3^ 
(1/2)
 
3.4.47.2 Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.89 \[ \int \frac {x^6}{\left (a+b x^3\right )^3} \, dx=\frac {\frac {9 a \sqrt [3]{b} x}{\left (a+b x^3\right )^2}-\frac {21 \sqrt [3]{b} x}{a+b x^3}-\frac {4 \sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{a^{2/3}}+\frac {4 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{a^{2/3}}-\frac {2 \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{a^{2/3}}}{54 b^{7/3}} \]

input
Integrate[x^6/(a + b*x^3)^3,x]
 
output
((9*a*b^(1/3)*x)/(a + b*x^3)^2 - (21*b^(1/3)*x)/(a + b*x^3) - (4*Sqrt[3]*A 
rcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]])/a^(2/3) + (4*Log[a^(1/3) + b^( 
1/3)*x])/a^(2/3) - (2*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/a^(2 
/3))/(54*b^(7/3))
 
3.4.47.3 Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.07, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.769, Rules used = {817, 817, 750, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^6}{\left (a+b x^3\right )^3} \, dx\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {2 \int \frac {x^3}{\left (b x^3+a\right )^2}dx}{3 b}-\frac {x^4}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {2 \left (\frac {\int \frac {1}{b x^3+a}dx}{3 b}-\frac {x}{3 b \left (a+b x^3\right )}\right )}{3 b}-\frac {x^4}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 750

\(\displaystyle \frac {2 \left (\frac {\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\int \frac {1}{\sqrt [3]{b} x+\sqrt [3]{a}}dx}{3 a^{2/3}}}{3 b}-\frac {x}{3 b \left (a+b x^3\right )}\right )}{3 b}-\frac {x^4}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {2 \left (\frac {\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}}{3 b}-\frac {x}{3 b \left (a+b x^3\right )}\right )}{3 b}-\frac {x^4}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {2 \left (\frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}}{3 b}-\frac {x}{3 b \left (a+b x^3\right )}\right )}{3 b}-\frac {x^4}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (\frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {\int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}}{3 b}-\frac {x}{3 b \left (a+b x^3\right )}\right )}{3 b}-\frac {x^4}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}}{3 b}-\frac {x}{3 b \left (a+b x^3\right )}\right )}{3 b}-\frac {x^4}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (\frac {\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}}{3 b}-\frac {x}{3 b \left (a+b x^3\right )}\right )}{3 b}-\frac {x^4}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (\frac {\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}}{3 b}-\frac {x}{3 b \left (a+b x^3\right )}\right )}{3 b}-\frac {x^4}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (\frac {\frac {-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}}{3 b}-\frac {x}{3 b \left (a+b x^3\right )}\right )}{3 b}-\frac {x^4}{6 b \left (a+b x^3\right )^2}\)

input
Int[x^6/(a + b*x^3)^3,x]
 
output
-1/6*x^4/(b*(a + b*x^3)^2) + (2*(-1/3*x/(b*(a + b*x^3)) + (Log[a^(1/3) + b 
^(1/3)*x]/(3*a^(2/3)*b^(1/3)) + (-((Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*x)/a^(1 
/3))/Sqrt[3]])/b^(1/3)) - Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/( 
2*b^(1/3)))/(3*a^(2/3)))/(3*b)))/(3*b)
 

3.4.47.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 750
Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Simp[1/(3*Rt[a, 3]^2)   Int[1/ 
(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]^2)   Int[(2*Rt[a, 3] - 
 Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x] /; 
 FreeQ[{a, b}, x]
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
3.4.47.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 3.65 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.35

method result size
risch \(\frac {-\frac {7 x^{4}}{18 b}-\frac {2 a x}{9 b^{2}}}{\left (b \,x^{3}+a \right )^{2}}+\frac {2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{2}}\right )}{27 b^{3}}\) \(54\)
default \(\frac {-\frac {7 x^{4}}{18 b}-\frac {2 a x}{9 b^{2}}}{\left (b \,x^{3}+a \right )^{2}}+\frac {\frac {2 \ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{27 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{27 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {2 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{27 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}}{b^{2}}\) \(123\)

input
int(x^6/(b*x^3+a)^3,x,method=_RETURNVERBOSE)
 
output
(-7/18*x^4/b-2/9*a*x/b^2)/(b*x^3+a)^2+2/27/b^3*sum(1/_R^2*ln(x-_R),_R=Root 
Of(_Z^3*b+a))
 
3.4.47.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 231 vs. \(2 (112) = 224\).

Time = 0.29 (sec) , antiderivative size = 503, normalized size of antiderivative = 3.29 \[ \int \frac {x^6}{\left (a+b x^3\right )^3} \, dx=\left [-\frac {21 \, a^{2} b^{2} x^{4} + 12 \, a^{3} b x - 6 \, \sqrt {\frac {1}{3}} {\left (a b^{3} x^{6} + 2 \, a^{2} b^{2} x^{3} + a^{3} b\right )} \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \log \left (\frac {2 \, a b x^{3} - 3 \, \left (a^{2} b\right )^{\frac {1}{3}} a x - a^{2} + 3 \, \sqrt {\frac {1}{3}} {\left (2 \, a b x^{2} + \left (a^{2} b\right )^{\frac {2}{3}} x - \left (a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}}}{b x^{3} + a}\right ) + 2 \, {\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x^{2} - \left (a^{2} b\right )^{\frac {2}{3}} x + \left (a^{2} b\right )^{\frac {1}{3}} a\right ) - 4 \, {\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x + \left (a^{2} b\right )^{\frac {2}{3}}\right )}{54 \, {\left (a^{2} b^{5} x^{6} + 2 \, a^{3} b^{4} x^{3} + a^{4} b^{3}\right )}}, -\frac {21 \, a^{2} b^{2} x^{4} + 12 \, a^{3} b x - 12 \, \sqrt {\frac {1}{3}} {\left (a b^{3} x^{6} + 2 \, a^{2} b^{2} x^{3} + a^{3} b\right )} \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \arctan \left (\frac {\sqrt {\frac {1}{3}} {\left (2 \, \left (a^{2} b\right )^{\frac {2}{3}} x - \left (a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}}}{a^{2}}\right ) + 2 \, {\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x^{2} - \left (a^{2} b\right )^{\frac {2}{3}} x + \left (a^{2} b\right )^{\frac {1}{3}} a\right ) - 4 \, {\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x + \left (a^{2} b\right )^{\frac {2}{3}}\right )}{54 \, {\left (a^{2} b^{5} x^{6} + 2 \, a^{3} b^{4} x^{3} + a^{4} b^{3}\right )}}\right ] \]

input
integrate(x^6/(b*x^3+a)^3,x, algorithm="fricas")
 
output
[-1/54*(21*a^2*b^2*x^4 + 12*a^3*b*x - 6*sqrt(1/3)*(a*b^3*x^6 + 2*a^2*b^2*x 
^3 + a^3*b)*sqrt(-(a^2*b)^(1/3)/b)*log((2*a*b*x^3 - 3*(a^2*b)^(1/3)*a*x - 
a^2 + 3*sqrt(1/3)*(2*a*b*x^2 + (a^2*b)^(2/3)*x - (a^2*b)^(1/3)*a)*sqrt(-(a 
^2*b)^(1/3)/b))/(b*x^3 + a)) + 2*(b^2*x^6 + 2*a*b*x^3 + a^2)*(a^2*b)^(2/3) 
*log(a*b*x^2 - (a^2*b)^(2/3)*x + (a^2*b)^(1/3)*a) - 4*(b^2*x^6 + 2*a*b*x^3 
 + a^2)*(a^2*b)^(2/3)*log(a*b*x + (a^2*b)^(2/3)))/(a^2*b^5*x^6 + 2*a^3*b^4 
*x^3 + a^4*b^3), -1/54*(21*a^2*b^2*x^4 + 12*a^3*b*x - 12*sqrt(1/3)*(a*b^3* 
x^6 + 2*a^2*b^2*x^3 + a^3*b)*sqrt((a^2*b)^(1/3)/b)*arctan(sqrt(1/3)*(2*(a^ 
2*b)^(2/3)*x - (a^2*b)^(1/3)*a)*sqrt((a^2*b)^(1/3)/b)/a^2) + 2*(b^2*x^6 + 
2*a*b*x^3 + a^2)*(a^2*b)^(2/3)*log(a*b*x^2 - (a^2*b)^(2/3)*x + (a^2*b)^(1/ 
3)*a) - 4*(b^2*x^6 + 2*a*b*x^3 + a^2)*(a^2*b)^(2/3)*log(a*b*x + (a^2*b)^(2 
/3)))/(a^2*b^5*x^6 + 2*a^3*b^4*x^3 + a^4*b^3)]
 
3.4.47.6 Sympy [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.44 \[ \int \frac {x^6}{\left (a+b x^3\right )^3} \, dx=\frac {- 4 a x - 7 b x^{4}}{18 a^{2} b^{2} + 36 a b^{3} x^{3} + 18 b^{4} x^{6}} + \operatorname {RootSum} {\left (19683 t^{3} a^{2} b^{7} - 8, \left ( t \mapsto t \log {\left (\frac {27 t a b^{2}}{2} + x \right )} \right )\right )} \]

input
integrate(x**6/(b*x**3+a)**3,x)
 
output
(-4*a*x - 7*b*x**4)/(18*a**2*b**2 + 36*a*b**3*x**3 + 18*b**4*x**6) + RootS 
um(19683*_t**3*a**2*b**7 - 8, Lambda(_t, _t*log(27*_t*a*b**2/2 + x)))
 
3.4.47.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.90 \[ \int \frac {x^6}{\left (a+b x^3\right )^3} \, dx=-\frac {7 \, b x^{4} + 4 \, a x}{18 \, {\left (b^{4} x^{6} + 2 \, a b^{3} x^{3} + a^{2} b^{2}\right )}} + \frac {2 \, \sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{27 \, b^{3} \left (\frac {a}{b}\right )^{\frac {2}{3}}} - \frac {\log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{27 \, b^{3} \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {2 \, \log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{27 \, b^{3} \left (\frac {a}{b}\right )^{\frac {2}{3}}} \]

input
integrate(x^6/(b*x^3+a)^3,x, algorithm="maxima")
 
output
-1/18*(7*b*x^4 + 4*a*x)/(b^4*x^6 + 2*a*b^3*x^3 + a^2*b^2) + 2/27*sqrt(3)*a 
rctan(1/3*sqrt(3)*(2*x - (a/b)^(1/3))/(a/b)^(1/3))/(b^3*(a/b)^(2/3)) - 1/2 
7*log(x^2 - x*(a/b)^(1/3) + (a/b)^(2/3))/(b^3*(a/b)^(2/3)) + 2/27*log(x + 
(a/b)^(1/3))/(b^3*(a/b)^(2/3))
 
3.4.47.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.92 \[ \int \frac {x^6}{\left (a+b x^3\right )^3} \, dx=-\frac {2 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{27 \, a b^{2}} + \frac {2 \, \sqrt {3} \left (-a b^{2}\right )^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{27 \, a b^{3}} + \frac {\left (-a b^{2}\right )^{\frac {1}{3}} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{27 \, a b^{3}} - \frac {7 \, b x^{4} + 4 \, a x}{18 \, {\left (b x^{3} + a\right )}^{2} b^{2}} \]

input
integrate(x^6/(b*x^3+a)^3,x, algorithm="giac")
 
output
-2/27*(-a/b)^(1/3)*log(abs(x - (-a/b)^(1/3)))/(a*b^2) + 2/27*sqrt(3)*(-a*b 
^2)^(1/3)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/(a*b^3) + 
1/27*(-a*b^2)^(1/3)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^(2/3))/(a*b^3) - 1/1 
8*(7*b*x^4 + 4*a*x)/((b*x^3 + a)^2*b^2)
 
3.4.47.9 Mupad [B] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.83 \[ \int \frac {x^6}{\left (a+b x^3\right )^3} \, dx=\frac {2\,\ln \left (x+\frac {a^{1/3}}{b^{1/3}}\right )}{27\,a^{2/3}\,b^{7/3}}-\frac {\frac {7\,x^4}{18\,b}+\frac {2\,a\,x}{9\,b^2}}{a^2+2\,a\,b\,x^3+b^2\,x^6}+\frac {\ln \left (x+\frac {a^{1/3}\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{2\,b^{1/3}}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{27\,a^{2/3}\,b^{7/3}}-\frac {\ln \left (x-\frac {a^{1/3}\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{2\,b^{1/3}}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{27\,a^{2/3}\,b^{7/3}} \]

input
int(x^6/(a + b*x^3)^3,x)
 
output
(2*log(x + a^(1/3)/b^(1/3)))/(27*a^(2/3)*b^(7/3)) - ((7*x^4)/(18*b) + (2*a 
*x)/(9*b^2))/(a^2 + b^2*x^6 + 2*a*b*x^3) + (log(x + (a^(1/3)*(3^(1/2)*1i - 
 1))/(2*b^(1/3)))*(3^(1/2)*1i - 1))/(27*a^(2/3)*b^(7/3)) - (log(x - (a^(1/ 
3)*(3^(1/2)*1i + 1))/(2*b^(1/3)))*(3^(1/2)*1i + 1))/(27*a^(2/3)*b^(7/3))